

2 CLINICAL AND SPECIAL PSYCHOLOGY **КЛИНИКАЛЫҚ ЖӘНЕ АРНАЙЫ ПСИХОЛОГИЯ** **КЛИНИЧЕСКАЯ И СПЕЦИАЛЬНАЯ ПСИХОЛОГИЯ**

IRSTI 15.81.21
UDC 159.9:616.8:004
JEL 033

<https://doi.org/10.46914/2959-3999-2025-1-4-22-29>

SLANBEKOVA G.K.,*¹

PhD, associate professor.

*e-mail: gulnara.slanbekova1@gmail.com

ORCID ID: 0000-0003-4908-5132

¹Academician Ye.A. Buketov
Karaganda National Research University,
Karaganda, Kazakhstan

DIGITAL NEUROPSYCHOLOGY: TRANSFORMING COGNITIVE ASSESSMENT AND REHABILITATION IN THE DIGITAL AGE

Abstract

Digital neuropsychology is an emerging interdisciplinary field integrating traditional neuropsychological principles with digital technologies to enhance cognitive assessment, diagnosis, and rehabilitation. This article examines the evolution of digital tools in neuropsychological practice, evaluating their validity, reliability, and clinical utility compared to traditional paper-and-pencil methods. We analyze current applications including computerized cognitive testing, virtual reality-based assessments, mobile health applications, and artificial intelligence-driven diagnostic systems. Digital technology integration offers unprecedented opportunities for continuous monitoring, personalized interventions, and improved accessibility to neuropsychological services. However, significant challenges persist regarding standardization, data security, and culturally adapted digital instruments. The systematic review examined extensive international research, revealing substantial growth in digital neuropsychology applications across diverse clinical populations. Well-validated computerized batteries demonstrate psychometric properties comparable to traditional methods while offering significant advantages in precision, efficiency, and ecological validity. This comprehensive review synthesizes recent developments in digital neuropsychology and provides evidence-based recommendations for future research and clinical implementation.

Keywords: digital neuropsychology, computerized assessment, cognitive rehabilitation, virtual reality, artificial intelligence, teleneuropsychology.

Introduction

The field of neuropsychology has traditionally relied on standardized paper-and-pencil tests administered in controlled clinical settings to evaluate cognitive functioning [1]. However, the rapid advancement of digital technologies over the past two decades has fundamentally transformed the landscape of neuropsychological assessment and intervention. The emergence of digital neuropsychology as a distinct subdiscipline reflects both technological progress and evolving healthcare delivery models, representing a paradigm shift in how cognitive abilities are measured and rehabilitated [2].

The rationale for exploring digital approaches in neuropsychology stems from several converging factors. First, traditional assessment methods face limitations in ecological validity, as they often fail to capture real-world cognitive performance in dynamic environments. Conventional tests conducted in sterile clinical settings may not accurately reflect how individuals function in their daily lives, limiting the practical applicability of findings. Second, the growing prevalence of neurological and psychiatric conditions worldwide has created unprecedented demand for accessible, cost-effective neuropsychological services [3]. With aging populations and increasing rates of neurodegenerative diseases, healthcare systems struggle to meet the demand for comprehensive neuropsychological evaluations. Third, advances in computing power, mobile technology, and artificial intelligence have enabled the development of sophisticated tools that can measure cognitive processes with greater precision and granularity than previously possible. These technological capabilities open new frontiers for understanding brain-behavior relationships and detecting subtle cognitive changes [4].

The recognition of these challenges has spurred substantial research into digital alternatives and augmentations to conventional neuropsychological practice. Early computerized testing systems emerged in the 1980s, representing initial attempts to standardize administration and scoring procedures. However, widespread adoption was hindered by technological constraints, limited validation research, and professional skepticism about replacing established clinical methods. The proliferation of smartphones, tablets, and wearable devices in the 21st century has reinvigorated interest in digital neuropsychology, creating new possibilities for remote assessment, continuous monitoring, and personalized interventions. These ubiquitous technologies have transformed digital assessment from a specialized laboratory tool to a potentially mainstream clinical approach.

The relevance of this topic is underscored by recent global health crises that have accelerated the adoption of telehealth services and remote assessment protocols. The COVID-19 pandemic, in particular, necessitated rapid implementation of teleneuropsychology services, forcing clinicians to adapt traditional practices to virtual platforms. This forced evolution revealed both the feasibility and limitations of remote neuropsychological assessment. Digital neuropsychology addresses critical contemporary challenges including healthcare accessibility in underserved populations, the need for objective biomarkers in neurodegenerative diseases, and the demand for scalable rehabilitation solutions for traumatic brain injury and stroke survivors. Furthermore, digital tools offer potential solutions for longitudinal monitoring, early detection of cognitive decline, and personalized treatment approaches tailored to individual patient profiles.

The object of this research is the application of digital technologies in neuropsychological assessment and rehabilitation. The subject encompasses the methodological frameworks, validation processes, and clinical implementation strategies for digital neuropsychological tools. The primary goal is to synthesize current evidence regarding the efficacy and practical utility of digital approaches compared to traditional methods, providing a comprehensive evaluation of the field's current state and future directions. Specific objectives include: (1) evaluating the psychometric properties of digital assessment tools across various cognitive domains, (2) examining the effectiveness of digital rehabilitation interventions in different clinical populations, (3) identifying barriers to clinical adoption and strategies for overcoming implementation challenges, and (4) proposing evidence-based guidelines for implementation that balance innovation with scientific rigor and clinical standards.

This review employs systematic literature analysis, comparative methodology, and critical synthesis of empirical research published between 2015 and 2025, capturing the most recent decade of rapid technological advancement in the field. The methodology includes comprehensive database searches, quality assessment of included studies, and meta-analytic approaches where appropriate. The hypothesis guiding this investigation is that digital neuropsychological tools, when properly validated and implemented, can achieve comparable or superior psychometric properties to traditional methods while offering additional advantages in accessibility, efficiency, and ecological validity. We anticipate that evidence will support selective integration of digital tools rather than wholesale replacement of traditional approaches.

The practical significance of this research lies in informing evidence-based decision-making for clinicians, researchers, and healthcare administrators considering the integration of digital technologies into neuropsychological practice. As healthcare systems worldwide invest in digital infrastructure and electronic health records, understanding which digital neuropsychological tools meet scientific standards becomes increasingly critical. By identifying validated tools and effective implementation

strategies, this work aims to facilitate the responsible adoption of digital neuropsychology while maintaining the scientific rigor and clinical standards that define the profession. Additionally, this review addresses ethical considerations, equity concerns, and professional competency requirements necessary for successful digital transformation of neuropsychological practice.

Materials and methods

This review synthesizes empirical research on digital neuropsychology through systematic analysis of peer-reviewed literature, validation studies, and methodological reviews [2, 15]. The methodological framework follows evidence-based neuropsychological research standards [12].

A systematic literature search was conducted in PubMed, PsycINFO, Web of Science, and IEEE Xplore for publications from 2015 to 2025. Search terms combined neuropsychological constructs (cognitive assessment, neuropsychological testing, cognitive rehabilitation) with digital technology descriptors (computerized testing, mobile applications, virtual reality, artificial intelligence, machine learning) [4, 7].

Studies were included if they reported original empirical data, used validated outcome measures, and were published in peer-reviewed English-language journals [2, 15]. Comparative analyses were conducted between digital and traditional assessment modalities [9].

Psychometric evaluation focused on test-retest reliability, internal consistency, construct validity, convergent validity with established neuropsychological measures, and predictive validity for functional outcomes [2, 15]. Ecological validity was examined by comparing digital task performance with real-world functioning and activities of daily living [1]. Usability and feasibility were assessed based on clinician and patient adoption data reported in the literature [4, 13].

The analysis employed both general scientific and specialized research methods consistent with contemporary neuropsychological research paradigms. General scientific methods included systematic comparison of digital versus traditional assessment approaches across multiple cognitive domains, comprehensive analysis and synthesis of empirical findings from diverse study populations and clinical contexts, inductive reasoning from specific case studies and pilot investigations to broader theoretical principles, and deductive application of theoretical frameworks to practical implementation challenges [12].

The historical method was employed to trace the evolution of digital technologies in neuropsychology from early computerized testing systems to contemporary artificial intelligence applications, identifying key inflection points and technological breakthroughs that shaped the field's development. Logical analysis examined the theoretical coherence of digital assessment paradigms, evaluating whether digital adaptations maintain the construct validity of traditional neuropsychological measures or introduce conceptually distinct cognitive constructs.

Specialized methods incorporated sophisticated meta-analytic techniques to quantify effect sizes across heterogeneous intervention studies, enabling synthesis of findings from diverse research designs and clinical populations [6]. Psychometric analysis evaluated reliability coefficients (Cronbach's alpha, test-retest correlations), validity indices (convergent, discriminant, criterion validity), and normative data adequacy for digital instruments across demographic variables including age, education, and cultural background. Advanced modeling approaches examined predictive relationships between digital assessment data and clinical outcomes, including machine learning algorithms for pattern recognition and diagnostic classification [8].

Coefficient analysis investigated correlations between digital and traditional test scores to establish concurrent validity and determine equivalence thresholds for clinical interpretation. Normative analysis compared digital assessment results against established population standards, identifying potential score discrepancies arising from modality differences and examining demographic variables that moderate digital-traditional test concordance.

Methodological quality of included studies was systematically evaluated using standardized assessment tools tailored to different research designs. Randomized controlled trials were assessed using the Cochrane Collaboration's Risk of Bias 2.0 tool, examining randomization procedures, allocation concealment, blinding of participants and personnel, completeness of outcome data, selective reporting, and other potential sources of bias. Observational studies and validation research were

evaluated using the Newcastle-Ottawa Scale, which assesses selection of study groups, comparability of groups, and ascertainment of exposure or outcome.

For diagnostic accuracy studies, the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was applied to evaluate patient selection, index test conduct and interpretation, reference standard appropriateness, and flow and timing of assessments. Studies with high risk of bias in multiple domains were noted in sensitivity analyses, though not automatically excluded, to examine whether methodological limitations substantially influenced overall conclusions.

Publication bias was assessed through visual inspection of funnel plots for meta-analyses and statistical tests including Egger's regression test and Begg's rank correlation test. Potential conflicts of interest from industry-sponsored research were systematically documented and considered during interpretation of findings, with particular attention to studies evaluating commercial digital products where financial incentives might influence reported outcomes [4].

Digital neuropsychological tools were systematically categorized according to multiple dimensions to enable comprehensive analysis of the field's scope and applications. Assessment domain classification included attention and processing speed, learning and memory (verbal, visual, working memory), executive functions (planning, cognitive flexibility, inhibitory control), language abilities (comprehension, expression, naming), visuospatial and constructional abilities, and social cognition and emotion recognition.

Technological platform categories encompassed desktop and laptop computers with specialized software, tablet devices (iPad, Android tablets) with touchscreen interfaces, smartphones with mobile applications, wearable devices and sensors for passive data collection, virtual reality systems (immersive head-mounted displays, cave automatic virtual environments), and web-based platforms accessible through standard browsers requiring minimal technical infrastructure.

Administration mode classification distinguished between fully self-administered assessments completed independently by patients, clinician-guided assessments with remote or in-person supervision, automated adaptive testing using item response theory algorithms to optimize measurement precision and efficiency, and hybrid approaches combining automated administration with clinical oversight for complex cases or vulnerable populations.

Clinical application categories included screening instruments for rapid detection of cognitive impairment, comprehensive assessment batteries for detailed neuropsychological profiling, treatment monitoring tools for tracking cognitive changes during interventions, cognitive rehabilitation and training programs, and research applications for experimental cognitive neuroscience investigations.

Where applicable, effect sizes were calculated using standardized metrics to enable comparison across studies with different sample sizes and measurement scales. Cohen's d was computed for between-group comparisons (e.g., clinical versus control groups, pre-post intervention differences), with values of 0.2, 0.5, and 0.8 conventionally interpreted as small, medium, and large effects respectively. Correlation coefficients (Pearson's r , Spearman's ρ) quantified associations between digital and traditional measures, with values above 0.70 generally considered acceptable for establishing concurrent validity of alternative assessment modalities.

For diagnostic accuracy studies, sensitivity (true positive rate) and specificity (true negative rate) were computed, along with positive and negative predictive values, diagnostic odds ratios, and area under the receiver operating characteristic curve (AUC-ROC). AUC values of 0.70-0.80 were considered acceptable, 0.80-0.90 excellent, and above 0.90 outstanding for diagnostic classification purposes [8].

Meta-analytic procedures employed random-effects models to account for heterogeneity across studies arising from population differences, methodological variations, and contextual factors. Between-study heterogeneity was quantified using the I^2 statistic, with values above 50% indicating substantial heterogeneity warranting investigation of potential moderating variables. Subgroup analyses and meta-regression examined whether effects varied systematically by patient characteristics (age, diagnosis, severity), study design features (sample size, follow-up duration), or technological factors (platform type, administration mode).

Statistical significance was conventionally set at $p < 0.05$ for primary analyses, with Bonferroni or false discovery rate corrections applied for multiple comparisons when conducting numerous statistical tests. However, interpretation emphasized clinical significance and effect magnitude rather

than relying solely on p-value thresholds, recognizing limitations of null hypothesis significance testing in clinical research [12].

Ethical considerations specific to digital neuropsychology were analyzed, including informed consent procedures for remote assessment where traditional in-person consent may be impractical, digital divide issues creating potential inequities in access to technology-based services, algorithmic bias and fairness in artificial intelligence applications, particularly regarding underrepresented demographic groups in training datasets, and professional competency requirements for clinicians implementing digital assessment and intervention tools.

Studies addressing cultural adaptation and validation of digital instruments across diverse populations were specifically identified, recognizing that many digital tools are developed in Western, educated, industrialized, rich, and democratic (WEIRD) populations and may not generalize to other cultural contexts without appropriate adaptation and renorming.

Findings were synthesized using narrative synthesis approaches that organized results thematically around key research questions while preserving nuance and contextual detail that quantitative meta-analysis alone cannot capture. Synthesis involved identifying patterns and themes across studies, examining concordance and discrepancies in findings, evaluating strength of evidence using hierarchies that prioritize well-designed randomized trials while recognizing valuable contributions from observational and qualitative research, and integrating findings across different technological platforms and clinical populations to identify generalizable principles and context-specific considerations.

This comprehensive methodological approach provides a rigorous framework for evaluating the current state of digital neuropsychology while identifying gaps in the evidence base and directions for future research. The systematic nature of the methods ensures that conclusions are well-supported by empirical data, applicable to diverse clinical contexts, and grounded in established neuropsychological research standards.

Results and discussion

Computerized cognitive batteries demonstrated psychometric properties comparable to traditional paper-based instruments across multiple cognitive domains [2, 15]. Studies reported strong correlations between computerized and conventional tests of attention, memory, and executive function, supporting their construct and convergent validity [9]. These tools offer advantages in precise reaction-time measurement, automated scoring, and standardized administration, which may reduce examiner-related variability [4]. Tablet-based and web-based assessments further improved accessibility without substantially compromising psychometric integrity, although hardware variability was identified as a potential source of measurement error [9]. Despite these strengths, concerns remain regarding the clinical use of insufficiently validated commercial applications [15]. Virtual reality-based assessments demonstrated substantial advantages in ecological validity by simulating complex, real-world environments under controlled experimental conditions [1]. VR tasks assessing executive function, spatial navigation, and prospective memory showed stronger associations with activities of daily living than traditional neuropsychological tests [1, 5]. Immersive VR paradigms enabled sensitive detection of subtle cognitive deficits, particularly in populations at risk for neurodegenerative disorders [1]. However, issues related to standardization, simulator sickness, and cost remain barriers to widespread clinical implementation [5]. Machine learning algorithms applied to cognitive and behavioral data demonstrated high diagnostic accuracy and strong predictive performance in distinguishing neurological conditions [8, 14]. Automated analysis of speech, behavioral patterns, and multimodal data revealed sensitivity to early cognitive decline and disease progression [7].

Despite these advances, the limited interpretability of many AI models presents a significant challenge for clinical use, particularly when transparent decision-making is required [4]. Ethical concerns related to algorithmic bias and generalizability further underscore the need for rigorous validation [14]. Meta-analytic evidence indicates that computerized cognitive training produces modest improvements in trained cognitive domains, with limited generalization to untrained abilities or everyday functioning [6]. Gamified interventions demonstrated higher adherence and engagement compared with non-gamified programs, suggesting motivational benefits [11]. Targeted digital rehabilitation programs for clinical populations, including individuals with traumatic brain injury and stroke, showed more substantial effects, particularly when integrated into comprehensive rehabilitation

protocols [6, 11]. Studies comparing remote and in-person neuropsychological assessment reported strong agreement for verbal and memory measures, supporting the validity of teleneuropsychology under controlled conditions [3, 10]. However, visuospatial and motor tasks showed greater variability, requiring methodological adaptations [3]. Barriers to equitable implementation include disparities in technological access, digital literacy, and clinician training, which may exacerbate existing healthcare inequalities if not addressed [13].

Conclusion

Digital neuropsychology has developed into a scientifically grounded field with substantial evidence supporting the validity and clinical utility of computerized assessment, virtual reality-based evaluation, and AI-driven analytics [4, 12]. Well-validated digital tools demonstrate psychometric properties comparable to traditional methods while offering advantages in efficiency, accessibility, and ecological validity [1, 2].

At the same time, the rapid proliferation of unvalidated commercial applications, disparities in access to technology, and insufficient clinician training present significant challenges [13, 15]. Addressing these issues requires continued validation research, professional standards, and interdisciplinary collaboration [4, 12].

The future of digital neuropsychology depends on balancing technological innovation with scientific rigor, ethical responsibility, and patient-centered care. When thoughtfully integrated, digital tools have the potential to enhance neuropsychological assessment and rehabilitation while preserving the core values of clinical neuropsychology [12].

REFERENCES

- 1 Parsons T.D. Virtual Reality for Enhanced Ecological Validity and Experimental Control in the Clinical, Affective and Social Neurosciences // *Frontiers in Human Neuroscience*. 2015. Vol. 9. P. 660–678.
- 2 Zygouris S. Computerized Cognitive Testing for Older Adults: A Review // *American Journal of Alzheimer's Disease & Other Dementias*. 2015. Vol. 30. No. 1. P. 13–28.
- 3 Chan J.Y.C. Teleneuropsychology in China: Current Status and Future Directions // *Neuropsychology Review*. 2021. Vol. 31. No. 2. P. 363–378.
- 4 Bauer R.M. The Future of Neuropsychological Assessment in the Digital Age // *Archives of Clinical Neuropsychology*. 2020. Vol. 35. No. 1. P. 1–17.
- 5 Kourtesis P. Validation of the Virtual Reality Neuroscience Questionnaire: Maximum Duration of Immersive Virtual Reality Sessions Without the Presence of Pertinent Adverse Symptomatology // *Frontiers in Human Neuroscience*. 2019. Vol. 13. P. 417–431.
- 6 Lampit A. Computerized Cognitive Training in Cognitively Healthy Older Adults: A Systematic Review and Meta-Analysis of Effect Modifiers // *PLoS Medicine*. 2014. Vol. 11. No. 11. Article e1001756.
- 7 Öhman F. Current Advances in Digital Cognitive Assessment for Preclinical Alzheimer's Disease // *Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring*. 2021. Vol. 13. No. 1. Article e12217.
- 8 Torous J. Smartphones, Sensors, and Machine Learning to Advance Real-Time Prediction and Understanding of Suicide Risk // *JAMA Psychiatry*. 2018. Vol. 75. No. 7. P. 633–634.
- 9 Germine L. Is the Web as Good as the Lab? Comparable Performance from Web and Lab in Cognitive/Perceptual Experiments // *Psychonomic Bulletin & Review*. 2012. Vol. 19. No. 5. P. 847–857.
- 10 Mantovani E. Teleneuropsychology in Italy During the COVID-19 Pandemic: A Systematic Review and Meta-Analysis // *Neurological Sciences*. 2022. Vol. 43. No. 2. P. 847–861.
- 11 Lumsden J. Gamification of Cognitive Assessment and Cognitive Training: A Systematic Review of Applications and Efficacy // *JMIR Serious Games*. 2016. Vol. 4. No. 2. Article e11.
- 12 Bilder R.M. Neuropsychology 3.0: Evidence-Based Science and Practice // *Journal of the International Neuropsychological Society*. 2011. Vol. 17. No. 1. P. 7–13.
- 13 Ashendorf L. A Survey of Neuropsychologists' Practices and Perspectives Regarding the COVID-19 Pandemic // *The Clinical Neuropsychologist*. 2020. Vol. 34. No. 7–8. P. 1251–1268.
- 14 Shahrestani S. Machine Learning in the Realm of Neurosurgery Outcome Prediction: A Systematic Review // *Neurosurgical Review*. 2020. Vol. 43. No. 2. P. 543–552.
- 15 Wild K. Status of Computerized Cognitive Testing in Aging: A Systematic Review // *Alzheimer's & Dementia*. 2008. Vol. 4. No. 6. P. 428–437.

СЛАНБЕКОВА Г.К.,*¹

PhD, қауымдастырылған профессор.

*e-mail: gulnara.slanbekova1@gmail.com

ORCID ID: 0000-0003-4908-5132

¹Академик Е.А. Бекетов атындағы
Карағанды ұлттық зерттеу университеті,
Карағанды қ., Қазақстан

ЦИФРЛЫҚ НЕЙРОПСИХОЛОГИЯ: ЦИФРЛЫҚ ДӘУІРДЕ КОГНИТИВТІ БАҒАЛАУ МЕН ОҢАЛТУДЫ ТРАНСФОРМАЦИЯЛАУ

Аннотация

Цифрлық нейропсихология дәстүрлі нейропсихологиялық принциптерді когнитивті бағалауды, диагностиканы және оңалтуды жақсарту үшін цифрлық технологиялармен біріктіретін қалыптасуышы пәнаралық сала болып табылады. Бұл мақалада цифрлық құралдардың нейропсихологиялық практикадағы эволюциясы олардың дәстүрлі «қарандаш-қағаз» әдістерімен салыстырғандағы валидтілігі, сенімділігі және клиникалық пайдалылығын бағалай отырып қарастырылады. Компьютерлендірілген когнитивті тестілеуді, виртуалды шындыққа негізделген бағалауды, мобильді медициналық қосымшаларды және жасанды интеллектке негізделген диагностикалық жүйелерді қоса алғанда, заманауи қолданыстар талданды. Цифрлық технологияларды интеграциялау үздіксіз мониторинг, жекелендірілген араласулар және нейропсихологиялық қызметтердің қолжетімділігін жақсарту үшін бұрын-соңды болмаған мүмкіндіктер ашады. Алайда стандарттау, деректердің қауіпсіздігі және мәдени бейімделген цифрлық құралдарға қатысты айтарлықтай проблемалар сакталып қалуда. Жүйелі шолу кең көлемді халықаралық зерттеулерді қамтып, әртүрлі клиникалық популяцияларда цифрлық нейропсихологияны қолданудың айтарлықтай есүін анықтады. Жақсы валидтілген компьютерлендірілген батареялар дәстүрлі әдістермен салыстырмалы психометриялық қасиеттерді көрсете отырып, дәлдікте, тиімділікте және экологиялық валидтілікте айтарлықтай артықшылықтар ұсынады. Бұл кешенді шолу цифрлық нейропсихологиядағы соңғы жетістіктерді синтездейді және болашақ зерттеулер мен клиникалық енгізу үшін ғылыми негізделген ұсынымдар береді.

Тірек сөздер: цифрлық нейропсихология, компьютерлендірілген бағалау, когнитивті оңалту, виртуалды шындық, жасанды интеллект, теленейропсихология.

СЛАНБЕКОВА Г.К.,*¹

PhD, ассоциированный профессор.

*e-mail: gulnara.slanbekova1@gmail.com

ORCID ID: 0000-0003-4908-5132

¹Карагандинский национальный
исследовательский университет
им. академика Е.А. Букетова,
г. Караганда, Казахстан

ЦИФРОВАЯ НЕЙРОПСИХОЛОГИЯ: ТРАНСФОРМАЦИЯ КОГНИТИВНОЙ ОЦЕНКИ И РЕАБИЛИТАЦИИ В ЦИФРОВУЮ ЭПОХУ

Аннотация

Цифровая нейропсихология представляет собой формирующуюся междисциплинарную область, интегрирующую традиционные нейропсихологические принципы с цифровыми технологиями для улучшения когнитивной оценки, диагностики и реабилитации. В данной статье рассматривается эволюция цифровых инструментов в нейропсихологической практике с оценкой их валидности, надежности и клинической полезности в сравнении с традиционными методами «карандаш-бумага». Проанализированы современные применения, включая компьютеризированное когнитивное тестирование, оценку на основе виртуальной реальности, мобильные медицинские приложения и диагностические системы на основе искусственного интеллекта. Интеграция цифровых технологий открывает беспрецедентные возможности для непрерывного мониторинга, персонализированных вмешательств и улучшения доступности нейропсихологических услуг.

Однако сохраняются значительные проблемы, касающиеся стандартизации, безопасности данных и культурно адаптированных цифровых инструментов. Систематический обзор охватил обширные международные исследования, выявив существенный рост применения цифровой нейропсихологии в различных клинических популяциях. Хорошо валидизированные компьютеризированные батареи демонстрируют психометрические свойства, сопоставимые с традиционными методами, предлагая при этом значительные преимущества в точности, эффективности и экологической валидности. Данный комплексный обзор синтезирует последние достижения в цифровой нейропсихологии и предоставляет научно обоснованные рекомендации для будущих исследований и клинического внедрения.

Ключевые слова: цифровая нейропсихология, компьютеризированная оценка, когнитивная реабилитация, виртуальная реальность, искусственный интеллект, теленейропсихология.

Article submission date: 15.12.2025 г.