

4 PEDAGOGY AND EDUCATIONAL METHODOLOGY ПЕДАГОГИКА ЖӘНЕ БІЛІМ БЕРУ ӘДІСТЕМЕСІ ПЕДАГОГИКА И МЕТОДИКА ОБРАЗОВАНИЯ

МРНТИ 14.35.07

УДК 37.016:811.111

JEL I29

<https://doi.org/10.46914/2959-3999-2025-1-3-55-64>

BERKINBAYEVA G.O.,*¹

PhD.

*e-mail: g.berkinbayeva@gmail.com

ORCID ID: 0000-0001-8555-9994

TURLYKOJA A.B.,¹

master's student.

e-mail: ainuraturlykodzha@gmail.com

ORCID ID: 0009-0001-3496-2166

GARBER A.I.,²

PhD, associate professor.

e-mail: alena.garber@gmx.de

ORCID ID: 0000-0002-9582-6934

¹Kazakh National Women's
Teacher Training University,
Almaty, Kazakhstan

²Clinik Reinhards Höhe,
Bad Wildungen, Germany

PSYCHOLOGICAL EFFECTS OF VISUAL LEARNING TOOLS ON PRONUNCIATION SKILLS IN ENGLISH

Abstract

In this article the authors examine the psychological impact of visual learning tools on the development of pronunciation skills in English language learners. Based on a systematic review of contemporary research, the study explores how visual feedback mechanisms, including spectrograms, waveform analysis, phonetic charts, and real-time visual representations, influence learners' cognitive processing, self-efficacy, pronunciation anxiety, and motivation. The analysis demonstrates that visual learning tools enhance pronunciation accuracy by providing clear multisensory representations of speech patterns, facilitating comparison between learners' productions and native speaker models. In addition to phonetic improvement, visual feedback contributes to reduced pronunciation anxiety, increased self-confidence, enhanced metacognitive awareness, and intrinsic motivation. At the same time, the effectiveness of visual tools varies depending on cognitive load, individual learner differences, and pedagogical integration. The study concludes that visual feedback performs both cognitive and affective functions and should be implemented in balanced combination with auditory input to support pronunciation development.

Keywords: visual learning tools, pronunciation instruction, visual feedback, self-efficacy, pronunciation anxiety, cognitive engagement, English pronunciation.

Introduction

Pronunciation remains one of the most challenging aspects of second language acquisition, profoundly affecting learners' comprehensibility, communicative confidence, and overall language proficiency. Unlike other linguistic domains, pronunciation requires precise coordination of articulatory

mechanisms that learners cannot directly observe in themselves or others. This inherent invisibility of speech production processes has historically made pronunciation instruction particularly challenging, as it relies heavily on learners' ability to perceive subtle acoustic differences and translate auditory input into motor commands.

The advent of computer-assisted pronunciation training (CAPT) has introduced revolutionary possibilities for making speech visible through various technological applications. Visual learning tools—encompassing spectrographic analysis, real-time pitch tracking, articulatory animations, and comparative waveform displays—provide learners with graphical representations of their phonetic output (Olson & Offerman, 2021). These technologies fundamentally alter the pronunciation learning experience by adding a visual dimension to what was traditionally an exclusively auditory-motor task. The human brain's remarkable capacity to process visual information approximately 60,000 times faster than textual data suggests significant potential for visual aids to accelerate pronunciation learning (ChatterFox, 2023).

Beyond their practical utility in improving phonetic accuracy, visual learning tools have a profound psychological impact on learners. Research indicates that pronunciation difficulties often generate significant anxiety, with many learners avoiding speaking opportunities due to fears of making pronunciation errors (Baran-Łucarz, 2014). The visible, concrete nature of visual feedback may help address these psychological barriers by providing objective evidence of progress, reducing ambiguity in self-assessment, and offering learners greater control over their learning process. Understanding these psychological dimensions is crucial for maximizing the effectiveness of technology-enhanced pronunciation instruction.

The psychological impact of visual learning tools operates through multiple interconnected mechanisms. From a cognitive perspective, visual representations help reduce the abstract nature of phonetic concepts, making them more concrete and easier to manipulate. Learners can observe, analyze, and compare visual patterns, engaging in explicit metacognitive processes that might remain implicit in purely auditory approaches. From an affective perspective, visual feedback influences learners' emotional responses to pronunciation practice, potentially reducing anxiety while enhancing confidence and motivation (Kartushina et al., 2015).

Despite growing interest in CAPT and visual feedback applications, research specifically examining the psychological effects of these tools remains relatively limited. While numerous studies document pronunciation improvement following visual feedback interventions, fewer investigate the underlying psychological processes mediating these effects. Questions remain regarding how visual tools influence learners' self-efficacy beliefs, how they modulate pronunciation anxiety, whether they enhance intrinsic motivation, and how individual psychological differences moderate their effectiveness.

This article addresses these gaps by systematically examining the psychological effects of visual learning tools on the development of pronunciation skills. The analysis integrates cognitive and affective dimensions, exploring how visual feedback influences not only learners' phonetic knowledge and skills but also their psychological dispositions toward pronunciation learning. By synthesizing contemporary research findings, this study aims to provide comprehensive insights into the psychological mechanisms through which visual tools support pronunciation development and to inform evidence-based pedagogical practices.

Materials and methods

Research Design and Scope

This study employed a systematic literature review methodology to examine the psychological effects of visual learning tools on English pronunciation acquisition. The review encompassed empirical research published between 2014 and 2025, capturing recent developments in CAPT technologies and their psychological implications. This temporal scope ensures inclusion of contemporary digital tools while providing sufficient depth for meaningful synthesis.

Search Strategy and Selection Criteria

Comprehensive searches were conducted across multiple academic databases including Web of Science, Scopus, ERIC, and specialized linguistics repositories. Search terms combined pronunciation-related keywords (pronunciation instruction, phonetic training, segmental/suprasegmental features), technology descriptors (visual feedback, CAPT, computer-assisted pronunciation, visual learning

tools, spectrographic analysis), and psychological constructs (self-efficacy, anxiety, motivation, cognitive engagement, affective factors).

Inclusion criteria required that studies: (1) investigated visual tools or visual feedback for pronunciation instruction, (2) included English as target language or findings generalizable to English pronunciation, (3) measured or discussed psychological variables or learner perceptions, (4) employed empirical research methods including experimental, quasi-experimental, mixed-methods, or qualitative designs, and (5) appeared in peer-reviewed publications. Studies focusing exclusively on speech recognition without visual components or examining pronunciation without psychological dimensions were excluded.

Analytical Framework

The analysis adopted a dual-perspective framework examining both cognitive and affective psychological dimensions. The cognitive perspective explored how visual tools influence attention, perception, metacognition, and cognitive load in pronunciation learning. The affective perspective examined impacts on self-efficacy, anxiety, motivation, and learner attitudes. This integrated approach recognizes that effective pronunciation learning requires both cognitive skill development and positive affective dispositions.

Selected studies were analyzed to extract information regarding: (1) types of visual tools and feedback mechanisms employed, (2) pronunciation features targeted (segmental vs. suprasegmental), (3) psychological constructs measured or observed, (4) research methodologies and measurement instruments, (5) reported psychological outcomes and effect sizes, (6) learner perceptions and experiences, and (7) contextual and individual difference factors moderating effects.

Theoretical grounding drew upon cognitive load theory to understand how visual representations affect working memory demands, self-efficacy theory to examine confidence and competence beliefs, and self-determination theory to explore motivational dimensions. The synthesis integrated quantitative findings from experimental studies with qualitative insights from learner experience reports, providing a comprehensive understanding of the psychological impacts of visual tools.

Results and discussion

Cognitive Processing and Metacognitive Awareness

Visual learning tools fundamentally alter cognitive processing in pronunciation learning by providing external, observable representations of phonetic phenomena. Research demonstrates that visual feedback enables learners to engage in explicit comparison and analysis of speech patterns, supporting metacognitive awareness that might remain implicit in auditory-only approaches. The capacity to visualize one's own pronunciation alongside native speaker models facilitates what (Garcia et al., 2018) terms "self-correction of second language pronunciation via online, real-time, visual feedback."

The dual-coding effect, whereby information presented through multiple modalities enhances learning, appears particularly salient for pronunciation. Visual representations transform abstract phonetic concepts into concrete, manipulable objects of analysis. Learners can observe durational relationships, pitch movements, and spectral characteristics that would otherwise remain invisible. This externalization reduces cognitive demands associated with purely internal monitoring, allowing learners to allocate attentional resources more effectively (Pennington & Rogerson-Revell, 2019).

Studies examining voice onset time training demonstrate that visual feedback significantly improves learners' ability to perceive and produce phonemic contrasts. Research by Olson and Offerman (2021) comparing different visual feedback approaches found that learners receiving visual representations showed significant improvement in pronunciation, regardless of the intervention duration or approach. The visual modality appears to enhance noticing of specific phonetic features, a crucial cognitive process in skill acquisition. By making the invisible visible, visual tools help learners identify precisely which aspects of their production differ from target models.

However, visual feedback effectiveness relates to cognitive load considerations. Olson (2022) observed that complex visual representations combined with controlled speech production might generate excessive cognitive demands, potentially limiting effectiveness. The challenge of simultaneously attending to visual displays, monitoring one's production, and executing articulatory movements can overwhelm working memory capacity. This suggests that visual tools require careful calibration to provide sufficient information without inducing cognitive overload.

Self-Efficacy and Competence Beliefs

Self-efficacy – the belief in one's capability to successfully perform specific tasks – emerges as a critical psychological construct influenced by visual learning tools. Research demonstrates robust relationships between pronunciation self-efficacy and both strategy use and learning outcomes (Sardegna et al., 2018). Visual feedback tools appear to enhance self-efficacy through multiple mechanisms aligned with Bandura's four sources of efficacy beliefs: mastery experiences, vicarious experiences, verbal persuasion, and physiological states.

Visual tools support mastery experiences by providing concrete evidence of progress. When learners observe their waveforms increasingly approximating those of native speakers, they gain objective validation of their improvement. This tangible feedback reduces ambiguity inherent in self-assessment based solely on auditory perception. A study investigating mirroring approaches with visual feedback found significant positive effects on pronunciation improvement, as perceived by participants, mediated by intrinsic motivation and cognitive engagement (Baagbah, 2025). The visual confirmation of progress appears to strengthen learners' confidence in their pronunciation abilities.

The immediate, objective nature of visual feedback may also reduce the physiological arousal associated with pronunciation anxiety. Unlike subjective evaluations from teachers or peers, visual displays provide neutral, non-judgmental feedback that learners can process privately. This emotional safety potentially enables learners to engage more freely in pronunciation practice, building efficacy through repeated successful experiences. Research examining the sources of pronunciation self-efficacy confirms significant associations between various efficacy sources and pronunciation self-efficacy beliefs (Shehzad et al., 2019).

However, the relationship between visual feedback and self-efficacy may be moderated by individual differences. Sardegna et al. (2018) found that self-efficacy about pronunciation skills significantly influenced emotional responses for female learners but showed negligible effects for males, suggesting gender differences in how visual feedback impacts psychological states. Additionally, learners with initially lower self-efficacy may require more scaffolded introduction to visual tools to prevent the technology from appearing overwhelming rather than empowering.

Pronunciation Anxiety and Affective Responses

Pronunciation anxiety – conceptualized as pronunciation self-perception, fear of negative evaluation, and beliefs about target language sounds – represents a significant psychological barrier to speaking practice and pronunciation development (Baran-Łucarz, 2014). Research consistently demonstrates negative correlations between pronunciation anxiety and willingness to communicate, with pronunciation concerns particularly likely to cause embarrassment and apprehension in language learners. Visual learning tools offer potential for anxiety reduction through several psychological mechanisms.

The private, self-paced nature of visual feedback practice reduces social-evaluative threats inherent in pronunciation instruction. Learners can experiment with sounds, receive immediate feedback, and make corrections without fear of peer judgment or teacher evaluation. This psychological safety encourages risk-taking and practice – behaviors essential for skill development but often inhibited by anxiety. Studies of computer-assisted pronunciation training emphasize that technology-mediated feedback promotes learner autonomy and affords individualized instruction (Thomson & Derwing, 2015).

Visual feedback may reduce anxiety by making pronunciation assessment more objective and transparent. The ambiguity surrounding pronunciation evaluation – wherein learners struggle to determine whether their production is acceptable – can intensify anxiety. Visual displays provide concrete, quantifiable targets, transforming the subjective question "Am I pronouncing this correctly?" into the more manageable task of "Can I make my visual pattern match the target pattern?" This reframing may reduce the emotional intensity associated with pronunciation practice.

Research examining pronunciation anxiety and motivation found negative correlations between anxiety and learning outcomes, while simultaneously noting that anxiety can paradoxically increase intentional practice behaviors (Baran-Łucarz, 2017). Visual feedback tools might harness this paradox by channeling anxious energy into productive, focused practice. The concrete nature of visual targets provides anxious learners with clear action steps, potentially transforming debilitating worry into constructive effort.

However, the anxiety-reducing effects of visual feedback depend on its appropriate implementation. Overly precise or complex visual displays might paradoxically increase anxiety by setting unattainably

high standards or overwhelming learners with technical information. Research on exaggerated audio-visual corrective feedback emphasizes the importance of personalizing exaggeration levels to individual learners' needs and proficiency (Bu et al., 2021). Visual tools should be introduced gradually, with clear instruction on interpretation to prevent technology-induced anxiety.

Motivation and Engagement

Motivation – encompassing both the drive to learn and sustained engagement with learning activities – significantly predicts pronunciation learning success. Visual learning tools influence motivational processes through multiple pathways aligned with self-determination theory's emphasis on autonomy, competence, and relatedness. Research investigating the use of mirroring with visual feedback found that intrinsic motivation and cognitive engagement mediated the relationship between visual feedback and pronunciation improvement (Baagbah, 2025).

The interactive, game-like qualities of many visual feedback applications enhance intrinsic motivation by making practice inherently engaging. Rather than repetitive drilling, learners pursue the goal of matching visual targets, transforming practice into a form of visual-motor skill game. This gamification element may sustain engagement over extended practice periods, which are necessary for pronunciation development. Studies of mobile pronunciation applications have reported that visual feedback increases students' engagement in improving pronunciation (Yang, 2022).

Visual feedback supports autonomous learning by enabling independent practice without requiring constant teacher presence. Learners can access immediate feedback on their productions, allowing them to adjust and experiment freely. This autonomy satisfies a fundamental psychological need, enhancing intrinsic motivation. Research on automatic speech recognition for pronunciation training found that independent practice with ASR increases learner autonomy by allowing students to experiment with sounds without social pressure (McCrocklin, 2012).

The competence support provided by visual feedback—through observable progress indicators and achievement of increasingly challenging targets—further enhances motivation. Sardegna et al. (2018) demonstrated that perceived practical and linguistic values related to pronunciation learning increased students' intentional behavior to improve pronunciation skills. Visual tools make progress visible, satisfying the need for competence and reinforcing continued effort. Color-coded feedback systems that instantly identify areas of strength and areas needing improvement make learning journeys more targeted and efficient (ChatterFox, 2023).

However, motivation effects may depend on integration within broader instructional contexts. Visual tools functioning as isolated practice activities might generate initial excitement that wanes without connection to meaningful communication goals. Effective implementation requires linking visual feedback practice to authentic speaking tasks, ensuring learners perceive pronunciation work as relevant to their communicative needs rather than as decontextualized technical exercises.

Individual Differences and Learning Styles

The psychological impact of visual learning tools varies considerably across individuals, influenced by learning style preferences, prior technology experience, language proficiency levels, and personality characteristics. Understanding these individual differences is crucial for maximizing the effectiveness of visual feedback and avoiding potential adverse psychological effects for specific learner populations.

Visual learning style preference represents an obvious moderating factor. Learners who naturally process information more effectively through visual channels may experience more substantial psychological benefits from visual feedback tools. These individuals often report that visual representations make abstract phonetic concepts "click" in ways that auditory explanation alone cannot achieve. However, research suggests that even learners without strong visual preferences benefit from multimodal presentation, consistent with cognitive load theory's emphasis on distributed processing (Olson, 2022).

Technology familiarity and attitudes toward digital learning tools influence psychological responses to CAPT applications. Learners who are comfortable with technology may enthusiastically embrace visual feedback tools, experiencing them as empowering and innovative. Conversely, technology-anxious learners might initially find visual feedback systems intimidating, experiencing cognitive overload from navigating interfaces in addition to processing phonetic content. Gradual introduction with substantial support proves essential for these learners.

Language proficiency level moderates how learners utilize and benefit from visual feedback. Beginning learners may lack sufficient phonetic awareness to interpret visual displays meaningfully,

which can lead to frustration rather than empowerment. Intermediate learners often show the strongest benefits, possessing foundational knowledge that enables them to make productive use of detailed feedback. Advanced learners may require more sophisticated visual analysis tools that match their refined discrimination abilities. Bu et al. (2021) emphasize the incorporation of personalized dynamic feedback mechanisms tailored to learners' English proficiency levels.

Gender differences emerge in some research, with Sardegna et al. (2018) reporting differential effects of self-efficacy on emotional responses between male and female learners. These findings suggest that the implementation of visual feedback might require gender-sensitive approaches, although more research is needed to understand the mechanisms underlying such differences. Other personality factors including perfectionism, anxiety disposition, and tolerance for ambiguity likely influence how learners psychologically process visual feedback.

Types of Visual Tools and Differential Psychological Effects

Different types of visual learning tools generate distinct psychological effects through varying cognitive and affective mechanisms. Understanding these differences enables the informed selection and implementation of visual technologies that are appropriate for specific learning objectives and learner populations.

Waveform and spectrographic displays provide detailed acoustic information enabling precise analysis of temporal and spectral characteristics. These tools support explicit, analytical learning approaches, appealing to learners who prefer to understand the underlying phonetic principles. Psychologically, such tools may enhance a sense of control and mastery by providing a detailed understanding. However, their technical complexity might overwhelm some learners or create anxiety about achieving perfect visual matches. Research indicates that longer treatments with visual feedback yield greater improvement, suggesting time is needed to develop comfort with interpretation (Olson & Offerman, 2021).

Pitch tracking displays and intonation visualization tools specifically target suprasegmental features. These create intuitive, melody-like representations that many learners find more accessible than spectrograms. The visual metaphor of rising and falling lines mapping to pitch movement requires minimal technical knowledge, potentially reducing cognitive load while enhancing engagement. Psychologically, these tools may be particularly motivating because intonation improvement is often immediately perceptible, providing quick wins that build confidence.

Articulatory animation and visual phonetics resources, which display tongue position, lip shape, and vocal tract configuration, provide concrete illustrations of speech production mechanisms. These tools address a fundamental psychological challenge in pronunciation learning: the invisibility of articulation. By revealing internal articulatory processes, such tools reduce mystery and uncertainty, potentially decreasing anxiety while enhancing understanding. However, some learners find detailed anatomical representations off-putting or unnecessarily complex.

Gamified visual feedback systems incorporating color-coding, progress bars, and achievement indicators leverage game psychology to enhance motivation and sustained engagement. Color-coded feedback allows learners to instantly identify areas of strength and weakness, making practice more targeted (ChatterFox, 2023). Psychological research on gamification suggests that well-designed reward systems can significantly enhance intrinsic motivation; however, poorly implemented gamification may generate pressure or discourage learners who struggle to achieve badges or scores.

Interactive phonemic charts, which combine visual symbols with audio playback, offer a distinct psychological experience—one of exploration and discovery rather than evaluation. These tools enable learners to explore sound systems at their own pace, without the pressure of performance. The exploratory nature may reduce anxiety while satisfying curiosity, though such tools provide less direct feedback on learners' own productions compared to other visual technologies.

Integration with Pedagogical Approaches

The psychological effects of visual learning tools depend substantially on how they are integrated within broader pedagogical approaches. Technology alone does not ensure positive psychological outcomes; rather, thoughtful implementation that balances visual feedback with other instructional elements optimizes psychological benefits while minimizing potential drawbacks.

Sequential versus simultaneous presentation of phonemes influences cognitive processing and learning outcomes. Research by Olson and Offerman (2021) found that sequential approaches—addressing individual phonemes before moving to the next—produced greater improvement than simultaneous presentation of multiple phonemes. From a psychological perspective, sequential

approaches may reduce cognitive load, prevent learners from being overwhelmed, and facilitate a deeper processing of each targeted feature. This finding suggests that careful pacing of visual feedback interventions supports optimal psychological conditions for learning.

The duration and intensity of visual feedback practice affect both skill development and psychological outcomes. While brief interventions can produce measurable improvement, longer treatments generally yield better results (Olson & Offerman, 2021). Psychologically, extended practice enables learners to progress from initial discomfort or confusion toward mastery, thereby building confidence through sustained success. However, practice must remain engaging to prevent fatigue or boredom from undermining motivation.

Integration with communicative activities ensures that pronunciation practice serves meaningful purposes rather than becoming isolated technical exercise. When learners perceive clear connections between visual feedback practice and their communicative goals, psychological investment increases. Research emphasizing the importance of linking pronunciation instruction within broader English teaching frameworks highlights how integration improves learners' understanding, precision, fluency, and self-assurance (Al-Asi, 2024).

Teacher mediation plays a crucial psychological role even when using self-paced visual feedback tools. Teachers encourage, help interpret visual displays, troubleshoot difficulties, and maintain learners' motivation during challenging phases. Research on exaggerated visual feedback emphasizes that effective implementation requires professional training for instructors despite technological sophistication (Bu et al., 2021). The human element remains essential for optimizing psychological conditions supporting pronunciation development.

Conclusion

This comprehensive review demonstrates that visual learning tools exert substantial psychological effects on pronunciation skill development, operating through both cognitive and affective mechanisms. The evidence clearly indicates that visual feedback technologies influence not only pronunciation accuracy but also fundamental psychological constructs, including self-efficacy, anxiety, motivation, metacognitive awareness, and cognitive engagement. These psychological dimensions prove as important as purely phonetic improvements in determining overall learning outcomes and sustained development.

From a cognitive perspective, visual learning tools make invisible speech processes observable, enabling explicit analysis and metacognitive reflection. By transforming abstract acoustic signals into concrete visual patterns, these technologies reduce cognitive demands associated with purely internal monitoring while supporting noticing of specific phonetic features. The multisensory presentation creates dual-coding effects that enhance learning, though careful attention to cognitive load remains essential to prevent overwhelming learners with excessive information.

Affectively, visual feedback tools offer multiple psychological benefits. They enhance self-efficacy by providing objective evidence of progress and supporting mastery experiences. They reduce pronunciation anxiety through private, non-judgmental feedback that minimizes social-evaluative threats. They enhance motivation by making practice engaging and supporting autonomous learning. These affective benefits create psychological conditions conducive to sustained practice and risk-taking, which are essential for pronunciation development.

However, visual learning tools are not universally beneficial. Their effectiveness varies based on individual differences, including learning style preferences, comfort with technology, language proficiency, and personality characteristics. Some learners find visual displays empowering and clarifying, while others experience them as overwhelming or confusing. Gender differences in psychological responses suggest that the implementation of visual feedback requires sensitivity to diverse learner needs and preferences.

Several recommendations for pedagogical practice emerge from this analysis. First, visual learning tools should be introduced gradually, accompanied by explicit instruction on interpretation, to prevent technology-induced anxiety or cognitive overload. Second, visual feedback should be integrated within communicative contexts, rather than functioning as isolated technical exercises, to ensure learners perceive pronunciation work as relevant to their goals. Third, implementation should accommodate individual differences through flexible approaches, allowing learners to adjust complexity, pacing, and the type of visual representation.

Fourth, visual feedback works optimally when balanced with auditory input and kinesthetic practice. Over-reliance on visual modalities might lead learners to prioritize visual pattern-matching over actual sound production, potentially undermining communicative pronunciation goals. Fifth, sequential presentation of phonemes appears more effective than simultaneous approaches, supporting focused attention and reduced cognitive load. Sixth, teacher mediation remains crucial even with sophisticated technologies, providing encouragement, interpretation support, and motivational maintenance.

Future research should continue to investigate the mechanisms through which visual feedback influences psychological processes. Longitudinal studies tracking learners' psychological states across extended visual feedback interventions would illuminate how effects evolve and identify critical periods for intervention. Research examining how different types of visual representations (waveforms, pitch tracks, articulatory animations) differentially affect psychological outcomes would enable more precise matching of tools to learners and objectives.

Additionally, investigation of how visual feedback can be personalized based on individual psychological profiles would advance precision in pronunciation instruction. Research on optimal exaggeration levels in visual and audio feedback demonstrates potential for individualization (Bu et al., 2021), but much remains to be understood about tailoring visual representations to psychological needs. Studies examining how cultural backgrounds influence psychological responses to visual feedback would also prove valuable in increasingly diverse language learning contexts.

The intersection of visual learning tools with emerging technologies, including augmented reality, virtual reality, and artificial intelligence, offers exciting possibilities. These technologies might address current limitations while introducing new psychological dimensions. For instance, AR applications could overlay articulatory guidance directly onto learners' faces, potentially reducing cognitive load while enhancing spatial understanding. AI systems could provide increasingly sophisticated personalized feedback adapted to individual learning trajectories and psychological states.

In conclusion, visual learning tools represent powerful resources for pronunciation instruction, offering not merely technical support for phonetic skill development but also profound psychological benefits that create optimal conditions for learning. By enhancing cognitive clarity while supporting positive affective states, visual feedback tools address multiple dimensions of the pronunciation learning challenge. Continued research and thoughtful pedagogical implementation promise to further unlock the potential of visual technologies to transform pronunciation education, making the invisible visible and the challenging achievable for diverse learners worldwide.

REFERENCES

- 1 Al-Asi Z. Challenges and strategies in teaching English pronunciation to non-native speakers // African Journal of Advanced Studies in Humanities and Social Sciences (AJASHSS). 2024, vol. 3, no. 2., pp. 34–41. DOI: 10.65418/ajashss.v3i2.750
- 2 Baran-Łucarz M. The link between pronunciation anxiety and willingness to communicate in the foreign-language classroom: The Polish EFL context // The Canadian Modern Language Review. 2014, vol. 70, no. 4, pp. 445–473. DOI: doi.org/10.3138/cmlr.2666
- 3 Baran-Łucarz M. FL pronunciation anxiety and motivation: Results of a mixed-method study // At the crossroads: Challenges of foreign language learning, Springer. 2017, pp. 107–133. DOI: 10.1007/978-3-319-55155-5_7
- 4 Chatter Fox. The power of visualization: how pronunciation apps use visual cues to aid language learning. 2023. URL: <https://chatterfox.com/the-power-of-visualization-how-pronunciation-apps-use-visual-cues-to-aid-language-learning/> (accessed: 10.11.2025)
- 5 Garcia C. Self-correction of second language pronunciation via online, real-time, visual feedback // Proceedings of the 9th Pronunciation in Second Language Learning and Teaching Conference. Iowa State University. 2018, pp. 54–65. URL: <https://iastatedigitalpress.com/psllt/article/15341/galley/13584/view/>
- 6 Kartushina N. The effect of phonetic production training with visual feedback on the perception and production of foreign speech sounds // The Journal of the Acoustical Society of America. 2015, vol. 138, no. 2, pp. 817–832. DOI: 10.1121/1.4926561
- 7 Bu Y. PTeacher: A computer-aided personalized pronunciation training system with exaggerated audio-visual corrective feedback // Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. ACM. 2021. DOI: 10.1145/3411764.3445490

8 Li P. Innovative approaches to English pronunciation instruction in ESL contexts: Integration of multi-sensor detection and advanced algorithmic feedback // *Frontiers in Psychology*. 2025, vol. 15, article 1484630. DOI: 10.3389/fpsyg.2024.1484630

9 McCrocklin S. The role of word stress in English as a lingua franca // *Proceedings of the 3rd Pronunciation in Second Language Learning and Teaching Conference*. Iowa State University. 2012, pp. 249–256. URL: <https://iastatedigitalpress.com/psllt/>.

10 Olson D.J. Visual feedback and relative vowel duration in L2 pronunciation: The curious case of stressed and unstressed vowels // *Pronunciation in Second Language Learning and Teaching Proceedings*. 2022, vol. 12, no. 1, article 13353. DOI: 10.31274/psllt.13353.

11 Olson D.J. Maximizing the effect of visual feedback for pronunciation instruction: A comparative analysis of three approaches // *Journal of Second Language Pronunciation*. 2021, vol. 7, no. 1, pp. 89–115. DOI: 10.1075/jslp.20005.ols

12 Pennington M.C. English pronunciation teaching and research: contemporary perspectives. Palgrave Macmillan. 2019. DOI: 10.1057/978-1-37-47677-7

13 Sardega V.G. Self-efficacy, attitudes, and choice of strategies for English pronunciation learning // *Language Learning*. 2018, vol. 68, no. 1, pp. 83–114. DOI: 10.1111/lang.12263.

14 Baagbah S.Y.S. The effect of mirroring approach with visual feedback on pronunciation improvement perception: mediating role of intrinsic motivation and cognitive engagement // *Cogent Education*. 2025, vol. 12, no. 1, article 2530784. DOI: 10.1080/2331186X.2025.2530784

15 Thomson R.I. The effectiveness of L2 pronunciation instruction: a narrative review // *Applied Linguistics*. 2015, vol. 36, no. 3, pp. 326–344. DOI: 10.1093/aplin/amu076

16 Shehzad M.W. The interplay between pronunciation self-efficacy sources and self-efficacy beliefs: a structural equation modeling approach // *Indonesian Journal of Applied Linguistics*. 2019, vol. 9, no. 1, pp. 177–187. DOI: 10.17509/ijal.v9i1.15933

17 Yang L. Student engagement with teacher feedback in pronunciation training supported by a mobile multimedia application // *SAGE Open*. 2022, vol. 12, no. 2. DOI: 10.1177/21582440221094604

БЕРКИНБАЕВА Г.О.,^{*1}

PhD.

*e-mail: g.berkinbayevaa@gmail.com

ORCID ID: 0000-0001-8555-9994

ТҮРЛҮҚОДЖА А.Б.,¹

магистрант.

e-mail: ainuraturlykodzha@gmail.com

ORCID ID: 0009-0001-3496-2166

ГАРБЕР А.И.,²

PhD, қауымдастырылған профессор.

e-mail: alena.garber@gmx.de

ORCID ID: 0000-0002-9582-6934

¹Қазақ ұлттық қыздар
педагогикалық университеті,

Алматы қ., Қазақстан

²Reinhardshöhe клиникасы,
Бад-Вильдунген қ., Германия

АҒЫЛШЫН ТІЛІНДЕГІ АЙТЫЛЫМ ДаҒДЫЛАРЫНА ВИЗУАЛДЫ ОҚЫТУ ҚҰРАЛДАРЫНЫҢ ПСИХОЛОГИЯЛЫҚ ӘСЕРІ

Аннотация

Бұл мақалада авторлар ағылшын тілін үйренушілердің айтылым дағдыларын дамытуда визуалды оқыту құралдарының психологиялық әсерін зерттеу аясында өз көзқарастарын ұсынады. Жүйелі ғылыми шолу негізінде визуалды көрі байланыс тетіктерінің, соның ішінде спектрограммалар, дыбыстық толқындарды талдау, фонетикалық артикуляциялық кестелер және нақты уақыттағы визуалды бейнелердің окушылардың когнитивтік ақпаратты өндеу үдерісіне, өзіндік тиімділік сезіміне, айтылым кезіндегі мазасыздық деңгейіне және мотивациясына ықпалы талданады. Зерттеу нәтижелері визуалды оқыту құралдарының айтылым дәлдігін арттыратынын көрсетеді, себебі олар сөйлеу үлгілерін нақты мультисенсорлық түрде бейнелеп, окушылар-

ға өз айтылымын ана тіл иелерінің үлгілерімен салыстыруға мүмкіндік береді. Сонымен қатар, визуалды кері байланыс айтылымға байланысты мазасыздықты төмендетіп, өзіне деген сенімділікті, метакогнитивтік хабардарлықты және ішкі мотивацияны қүштейтеді. Алайда визуалды әдістердің тиімділігі когнитивтік жүктеме деңгейіне, жеке ерекшеліктерге, білім алушылардың дайындық деңгейіне және педагогикалық интеграция тәсілдеріне тәуелді екені анықталады. Мақала қорытындысында визуалды кері байланысты есту модальділігімен тенгерімді түрде қолданудың маңыздылығы атап өтіледі, бұл айтылымды оқыту үдерісін ғылыми негізде жүйелі жетілдіруге және практикалық тиімділігін арттыруға мүмкіндік береді.

Тірек сөздер: визуалды оқыту құралдары, айтылымды оқыту, визуалды кері байланыс, өзін-өзі тиімділік, айтылым кезіндегі аландаушылық, когнитивтіқ қатысу, ағылшын айтылымы.

БЕРКИНБАЕВА Г.О.,^{*1}

PhD.

*e-mail: g.berkinbayeava@gmail.com

ORCID ID: 0000-0001-8555-9994

ТҰРЛЫҚОДЖА А.Б.,¹

магистрант.

e-mail: ainuraturlykodzha@gmail.com

ORCID ID: 0009-0001-3496-2166

ГАРБЕР А.И.,²

PhD, ассоциированный профессор.

e-mail: alena.garber@gmx.de

ORCID ID: 0000-0002-9582-6934

¹Казахский национальный
женский педагогический университет,

г. Алматы, Казахстан

²Reinhardshöhe клиникасы,

г. Бад-Вильдунген, Германия

ПСИХОЛОГИЧЕСКИЕ ЭФФЕКТЫ ВИЗУАЛЬНЫХ ИНСТРУМЕНТОВ ОБУЧЕНИЯ НА НАВЫКИ ПРОИЗНОШЕНИЯ В АНГЛИЙСКОМ ЯЗЫКЕ

Аннотация

В данной статье авторы предлагают собственный взгляд в рамках исследования психологических эффектов использования визуальных инструментов обучения в развитии навыков произношения у изучающих английский язык. На основе систематического обзора современных эмпирических и теоретических исследований анализируется влияние визуальной обратной связи, включая спектрограммы, анализ звуковых волн, фонетические таблицы и визуализацию в реальном времени, на когнитивную обработку информации, самоэффективность, уровень тревожности и мотивацию обучающихся. Результаты обзора показывают, что визуальные инструменты обучения способствуют повышению точности произношения за счет предоставления наглядных мультисенсорных презентаций речевых паттернов, облегчающих сравнение собственной речи учащихся с моделями носителей языка. К основным психологическим преимуществам относятся снижение тревожности, связанной с произношением, повышение уверенности в себе, развитие метакогнитивной осознанности и усиление внутренней мотивации. Вместе с тем эффективность визуальной обратной связи варьируется в зависимости от когнитивной нагрузки, индивидуальных различий обучающихся и характера педагогической интеграции. В заключение делается вывод, что визуальная обратная связь выполняет двойственную когнитивную и аффективную функцию и требует сбалансированного сочетания с аудиальным вводом.

Ключевые слова: визуальные инструменты обучения, обучение произношению, визуальная обратная связь, самоэффективность, тревожность при произношении, когнитивная вовлеченность, английское произношение.

Article submission date: 11.11.2025